Two-sided weighted Fourier inequalities

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bootstrapping Weighted Fourier Inequalities

is finite. The purpose of this paper is to provide a framework for proving inequalities of the form (1). The idea is to exploit the close relationship of the Fourier transform to the operation of convolution and then to apply techniques from the theory of positive integral operators. Although the convolution operators that arise are not necessarily positive, they are trivially majorized by posi...

متن کامل

Weighted inequalities for commutators of one-sided singular integrals

We prove weighted inequalities for commutators of one-sided singular integrals (given by a Calderón-Zygmund kernel with support in (−∞, 0)) with BMO functions. We give the one-sided version of the results in [C. Pérez, Sharp estimates for commutators of singular integrals via iterations of the Hardy-Littlewood maximal function, J. Fourier Anal. Appl., vol. 3 (6), 1997, pages 743–756] and [C. Pé...

متن کامل

Weighted Inequalities for the Two-dimensional One-sided Hardy-littlewood Maximal Function

In this work we characterize the pair of weights (w, v) such that the one-sided Hardy-Littlewood maximal function in dimension two is of weaktype (p, p), 1 ≤ p < ∞, with respect to the pair (w, v). As an application of this result we obtain a generalization of the classic Dunford-Schwartz Ergodic Maximal Theorem for bi-parameter flows of null-preserving transformations.

متن کامل

Weighted Norm Inequalities for Fourier Transforms of Radial Functions

Weighted L(R)→ L(R) Fourier inequalities are studied. We prove Pitt–Boas type results on integrability with general weights of the Fourier transform of a radial function.

متن کامل

Weighted Two-parameter Bergman Space Inequalities

In this inequality, ∇ denotes the full gradient in R + : ∇ = (∂/∂x1, . . . , ∂/∂xd, ∂/∂y); R + is the usual upper half space Rd×(0,∞); μ is a positive Borel measure defined on R + ; and v is a non-negative function in Lloc(R d). We studied this inequality primarily for p and q in the range 1 < p ≤ q < ∞. For the case in which q ≥ 2, we proved sufficient conditions on μ and v (depending on p, q,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE

سال: 2012

ISSN: 2036-2145,0391-173X

DOI: 10.2422/2036-2145.201005_008